R/SDistribution_StudentTNoncentral.R
StudentTNoncentral.Rd
Mathematical and statistical functions for the Noncentral Student's T distribution, which is commonly used to estimate the mean of populations with unknown variance from a small sample size, as well as in t-testing for difference of means and regression analysis.
Returns an R6 object inheriting from class SDistribution.
The Noncentral Student's T distribution parameterised with degrees of freedom, \(\nu\) and location, \(\lambda\), is defined by the pdf, $$f(x) = (\nu^{\nu/2}exp(-(\nu\lambda^2)/(2(x^2+\nu)))/(\sqrt{\pi} \Gamma(\nu/2) 2^{(\nu-1)/2} (x^2+\nu)^{(\nu+1)/2}))\int_{0}^{\infty} y^\nu exp(-1/2(y-x\lambda/\sqrt{x^2+\nu})^2)$$ for \(\nu > 0\), \(\lambda \epsilon R\).
The distribution is supported on the Reals.
TNS(df = 1, location = 0)
N/A
N/A
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other continuous distributions:
Arcsine
,
BetaNoncentral
,
Beta
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Dirichlet
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Gompertz
,
Gumbel
,
InverseGamma
,
Laplace
,
Logistic
,
Loglogistic
,
Lognormal
,
MultivariateNormal
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
Other univariate distributions:
Arcsine
,
Arrdist
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Empirical
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Geometric
,
Gompertz
,
Gumbel
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
Matdist
,
NegativeBinomial
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
,
WeightedDiscrete
distr6::Distribution
-> distr6::SDistribution
-> StudentTNoncentral
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
alias
Alias of the distribution.
packages
Packages required to be installed in order to construct the distribution.
Inherited methods
distr6::Distribution$cdf()
distr6::Distribution$confidence()
distr6::Distribution$correlation()
distr6::Distribution$getParameterValue()
distr6::Distribution$iqr()
distr6::Distribution$liesInSupport()
distr6::Distribution$liesInType()
distr6::Distribution$median()
distr6::Distribution$parameters()
distr6::Distribution$pdf()
distr6::Distribution$prec()
distr6::Distribution$print()
distr6::Distribution$quantile()
distr6::Distribution$rand()
distr6::Distribution$setParameterValue()
distr6::Distribution$stdev()
distr6::Distribution$strprint()
distr6::Distribution$summary()
distr6::Distribution$workingSupport()
new()
Creates a new instance of this R6 class.
StudentTNoncentral$new(df = NULL, location = NULL, decorators = NULL)
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.
variance()
The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.