Mathematical and statistical functions for the Hypergeometric distribution, which is commonly used to model the number of successes out of a population containing a known number of possible successes, for example the number of red balls from an urn or red, blue and yellow balls.

Returns an R6 object inheriting from class SDistribution.

The Hypergeometric distribution parameterised with population size, \(N\), number of possible successes, \(K\), and number of draws from the distribution, \(n\), is defined by the pmf, $$f(x) = C(K, x)C(N-K,n-x)/C(N,n)$$ for \(N = \{0,1,2,\ldots\}\), \(n, K = \{0,1,2,\ldots,N\}\) and \(C(a,b)\) is the combination (or binomial coefficient) function.

The distribution is supported on \(\{max(0, n + K - N),...,min(n,K)\}\).

Hyper(size = 50, successes = 5, draws = 10)

N/A

N/A

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

Other discrete distributions:
`Arrdist`

,
`Bernoulli`

,
`Binomial`

,
`Categorical`

,
`Degenerate`

,
`DiscreteUniform`

,
`EmpiricalMV`

,
`Empirical`

,
`Geometric`

,
`Logarithmic`

,
`Matdist`

,
`Multinomial`

,
`NegativeBinomial`

,
`WeightedDiscrete`

Other univariate distributions:
`Arcsine`

,
`Arrdist`

,
`Bernoulli`

,
`BetaNoncentral`

,
`Beta`

,
`Binomial`

,
`Categorical`

,
`Cauchy`

,
`ChiSquaredNoncentral`

,
`ChiSquared`

,
`Degenerate`

,
`DiscreteUniform`

,
`Empirical`

,
`Erlang`

,
`Exponential`

,
`FDistributionNoncentral`

,
`FDistribution`

,
`Frechet`

,
`Gamma`

,
`Geometric`

,
`Gompertz`

,
`Gumbel`

,
`InverseGamma`

,
`Laplace`

,
`Logarithmic`

,
`Logistic`

,
`Loglogistic`

,
`Lognormal`

,
`Matdist`

,
`NegativeBinomial`

,
`Normal`

,
`Pareto`

,
`Poisson`

,
`Rayleigh`

,
`ShiftedLoglogistic`

,
`StudentTNoncentral`

,
`StudentT`

,
`Triangular`

,
`Uniform`

,
`Wald`

,
`Weibull`

,
`WeightedDiscrete`

`distr6::Distribution`

-> `distr6::SDistribution`

-> `Hypergeometric`

`name`

Full name of distribution.

`short_name`

Short name of distribution for printing.

`description`

Brief description of the distribution.

`alias`

Alias of the distribution.

`packages`

Packages required to be installed in order to construct the distribution.

`properties`

Returns distribution properties, including skewness type and symmetry.

`distr6::Distribution$cdf()`

`distr6::Distribution$confidence()`

`distr6::Distribution$correlation()`

`distr6::Distribution$getParameterValue()`

`distr6::Distribution$iqr()`

`distr6::Distribution$liesInSupport()`

`distr6::Distribution$liesInType()`

`distr6::Distribution$median()`

`distr6::Distribution$parameters()`

`distr6::Distribution$pdf()`

`distr6::Distribution$prec()`

`distr6::Distribution$print()`

`distr6::Distribution$quantile()`

`distr6::Distribution$rand()`

`distr6::Distribution$stdev()`

`distr6::Distribution$strprint()`

`distr6::Distribution$summary()`

`distr6::Distribution$workingSupport()`

`new()`

Creates a new instance of this R6 class.

```
Hypergeometric$new(
size = NULL,
successes = NULL,
failures = NULL,
draws = NULL,
decorators = NULL
)
```

`size`

`(integer(1))`

Population size. Defined on positive Naturals.`successes`

`(integer(1))`

Number of population successes. Defined on positive Naturals.`failures`

`(integer(1))`

Number of population failures.`failures = size - successes`

. If given then`successes`

is ignored. Defined on positive Naturals.`draws`

`(integer(1))`

Number of draws from the distribution, defined on the positive Naturals.`decorators`

`(character())`

Decorators to add to the distribution during construction.

`mean()`

The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.

`mode()`

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

`variance()`

The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

`skewness()`

The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

`kurtosis()`

The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

`setParameterValue()`

Sets the value(s) of the given parameter(s).

```
Hypergeometric$setParameterValue(
...,
lst = list(...),
error = "warn",
resolveConflicts = FALSE
)
```

`...`

`ANY`

Named arguments of parameters to set values for. See examples.`lst`

`(list(1))`

Alternative argument for passing parameters. List names should be parameter names and list values are the new values to set.`error`

`(character(1))`

If`"warn"`

then returns a warning on error, otherwise breaks if`"stop"`

.`resolveConflicts`

`(logical(1))`

If`FALSE`

(default) throws error if conflicting parameterisations are provided, otherwise automatically resolves them by removing all conflicting parameters.