Mathematical and statistical functions for the Empirical distribution, which is commonly used in sampling such as MCMC.
Returns an R6 object inheriting from class SDistribution.
The Empirical distribution is defined by the pmf, $$p(x) = \sum I(x = x_i) / k$$ for \(x_i \epsilon R, i = 1,...,k\).
Sampling from this distribution is performed with the sample function with the elements given as the support set and uniform probabilities. Sampling is performed with replacement, which is consistent with other distributions but non-standard for Empirical distributions. Use simulateEmpiricalDistribution to sample without replacement.
The cdf and quantile assumes that the elements are supplied in an indexed order (otherwise the results are meaningless).
The distribution is supported on \(x_1,...,x_k\).
Emp(samples = 1)
N/A
N/A
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other discrete distributions:
Arrdist
,
Bernoulli
,
Binomial
,
Categorical
,
Degenerate
,
DiscreteUniform
,
EmpiricalMV
,
Geometric
,
Hypergeometric
,
Logarithmic
,
Matdist
,
Multinomial
,
NegativeBinomial
,
WeightedDiscrete
Other univariate distributions:
Arcsine
,
Arrdist
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Geometric
,
Gompertz
,
Gumbel
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
Matdist
,
NegativeBinomial
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
,
WeightedDiscrete
distr6::Distribution
-> distr6::SDistribution
-> Empirical
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
alias
Alias of the distribution.
Inherited methods
distr6::Distribution$cdf()
distr6::Distribution$confidence()
distr6::Distribution$correlation()
distr6::Distribution$getParameterValue()
distr6::Distribution$iqr()
distr6::Distribution$liesInSupport()
distr6::Distribution$liesInType()
distr6::Distribution$median()
distr6::Distribution$parameters()
distr6::Distribution$pdf()
distr6::Distribution$prec()
distr6::Distribution$print()
distr6::Distribution$quantile()
distr6::Distribution$rand()
distr6::Distribution$stdev()
distr6::Distribution$strprint()
distr6::Distribution$summary()
distr6::Distribution$workingSupport()
new()
Creates a new instance of this R6 class.
Empirical$new(samples = NULL, decorators = NULL)
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.
mode()
The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
variance()
The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.
skewness()
The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.
kurtosis()
The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
entropy()
The entropy of a (discrete) distribution is defined by $$- \sum (f_X)log(f_X)$$ where \(f_X\) is the pdf of distribution X, with an integration analogue for continuous distributions.
mgf()
The moment generating function is defined by $$mgf_X(t) = E_X[exp(xt)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.
cf()
The characteristic function is defined by $$cf_X(t) = E_X[exp(xti)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.
pgf()
The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.
setParameterValue()
Sets the value(s) of the given parameter(s).
...
ANY
Named arguments of parameters to set values for. See examples.
lst
(list(1))
Alternative argument for passing parameters. List names should be parameter names and list values
are the new values to set.
error
(character(1))
If "warn"
then returns a warning on error, otherwise breaks if "stop"
.
resolveConflicts
(logical(1))
If FALSE
(default) throws error if conflicting parameterisations are provided, otherwise
automatically resolves them by removing all conflicting parameters.
## ------------------------------------------------
## Method `Empirical$new`
## ------------------------------------------------
Empirical$new(runif(1000))
#> Emp(data = list(samples = c(0.000103691359981894, 0.00164648867212236, 0.00247683003544807, 0.00249242829158902, 0.00401845388114452, 0.00408198102377355, 0.00449630804359913, 0.00720894057303667, 0.00750555354170501, 0.00865807477384806, 0.0108724641613662, 0.0132726018782705, 0.013695368077606, 0.0147188026458025, 0.0147690158337355, 0.0150322786066681, 0.0160031442064792, 0.0170156876556575, 0.0177699560299516, 0.0185314333066344, 0.0189061700366437, 0.019525250652805, 0.0196958889719099, 0.0221170505974442,
#> 0.0238767648115754, 0.0248860311694443, 0.0266246700193733, 0.0270194539334625, 0.028712565312162, 0.0291041533928365, 0.0309238962363452, 0.0310260178521276, 0.0320927088614553, 0.0335040374193341, 0.0340522730257362, 0.0344292330555618, 0.0348996436223388, 0.0359098089393228, 0.0366794092115015, 0.0381407886743546, 0.0384149765595794, 0.038526406744495, 0.0385718832258135, 0.0395206899847835, 0.0399406552314758, 0.0430012932047248, 0.0433284393511713, 0.0435569984838367, 0.0458493106998503, 0.046063638990745,
#> 0.0469350144267082, 0.0502011657226831, 0.0510624526068568, 0.0527009717188776, 0.056073043262586, 0.056558586191386, 0.0581756506580859, 0.0590829530265182, 0.0631373389624059, 0.0648830933496356, 0.065636639483273, 0.067319828318432, 0.0683417033869773, 0.0684064193628728, 0.0687954481691122, 0.0699455172289163, 0.0704171205870807, 0.0709647727198899, 0.0713426703587174, 0.0715497385244817, 0.0729944417253137, 0.0732091320678592, 0.0746336323209107, 0.07588304951787, 0.076176312752068, 0.0769833216909319,
#> 0.0770898594055325, 0.0783282660413533, 0.0783842522650957, 0.0791664109565318, 0.0796190109103918, 0.0808449615724385, 0.0818330235779285, 0.0844361330382526, 0.0852247001603246, 0.085870444541797, 0.0860389897134155, 0.087183809839189, 0.0877202423289418, 0.0898489013779908, 0.091200975002721, 0.091969795525074, 0.0923966427799314, 0.0939681925810874, 0.0940303672105074, 0.0946227721869946, 0.0959265041165054, 0.0979780545458198, 0.0985663856845349, 0.0990097080357373, 0.100656457711011, 0.101095365360379,
#> 0.101313760969788, 0.101950954878703, 0.104046371765435, 0.104306503897533, 0.106346960878, 0.107331892941147, 0.107689367607236, 0.107744531240314, 0.108949673594907, 0.109048785641789, 0.109670019010082, 0.110329848947003, 0.111680223839357, 0.111789910122752, 0.113047500839457, 0.114378662081435, 0.115189302247018, 0.116309177130461, 0.118044569622725, 0.118276783032343, 0.118683209177107, 0.120041428366676, 0.121108880266547, 0.12179663986899, 0.121864625485614, 0.124373451108113, 0.125789226964116,
#> 0.125856270780787, 0.126492621842772, 0.126666583819315, 0.127557650906965, 0.128115758299828, 0.128602578304708, 0.129016225924715, 0.130024369573221, 0.131418510107324, 0.133348547620699, 0.133507662685588, 0.135991170769557, 0.136628583772108, 0.137970441021025, 0.138059550896287, 0.138074840884656, 0.138926521642134, 0.139359317719936, 0.142943662358448, 0.143266438273713, 0.143559225834906, 0.143803449813277, 0.145115376915783, 0.145315843401477, 0.145407346775755, 0.148463048506528, 0.148710346780717,
#> 0.148782722884789, 0.150928949937224, 0.151495558675379, 0.155294531024992, 0.156360570108518, 0.159034826094285, 0.15922928112559, 0.159274747595191, 0.161409182474017, 0.162198703736067, 0.163412279449403, 0.163623198168352, 0.164675234118477, 0.165010989643633, 0.165283794514835, 0.166161776287481, 0.166490767849609, 0.166603677673265, 0.168132450431585, 0.168414602987468, 0.170263659209013, 0.170395507011563, 0.172351888613775, 0.173224841943011, 0.174386327620596, 0.174868220463395, 0.177759329089895,
#> 0.178613093914464, 0.179034290602431, 0.179127504583448, 0.18081600125879, 0.18237791932188, 0.18331205425784, 0.18332012812607, 0.185446366202086, 0.185653790598735, 0.190525120124221, 0.192943317815661, 0.192943505709991, 0.193312666844577, 0.194759515346959, 0.196219522040337, 0.197463317075744, 0.198986241826788, 0.199000779306516, 0.199160666903481, 0.200559966498986, 0.201238424051553, 0.202698964858428, 0.203208829043433, 0.203664392232895, 0.203900680411607, 0.204030646011233, 0.204329062951729,
#> 0.205179745331407, 0.205828856211156, 0.20680187526159, 0.20962158520706, 0.2101352927275, 0.210310738068074, 0.212967462604865, 0.21314931102097, 0.214942595688626, 0.215272658271715, 0.216099976096302, 0.216380230383947, 0.216625959379598, 0.216995889088139, 0.217905807076022, 0.218338430393487, 0.218562992988154, 0.219235972734168, 0.219439741224051, 0.22002470633015, 0.224765427643433, 0.225115388631821, 0.226108731469139, 0.226481329649687, 0.232457197736949, 0.237697737524286, 0.238379750866443,
#> 0.238453106489033, 0.23927381564863, 0.239288098411635, 0.239638329250738, 0.240461234701797, 0.24159372295253, 0.241776089882478, 0.241788821527734, 0.242454329272732, 0.24249267578125, 0.242587020387873, 0.243392595089972, 0.243791283341125, 0.244483520975336, 0.244927987456322, 0.246750867227092, 0.247077947948128, 0.247219110373408, 0.248734866967425, 0.250523259630427, 0.25157762831077, 0.252699653152376, 0.253311580745503, 0.254773765802383, 0.254818350775167, 0.255749259144068, 0.256982919061556,
#> 0.258426348445937, 0.25920274364762, 0.259509476367384, 0.259818243561313, 0.260058912448585, 0.261186117772013, 0.261237550061196, 0.261856944067404, 0.262909896671772, 0.26330864848569, 0.263841792242602, 0.264481923077255, 0.265187191078439, 0.265793564263731, 0.268330775666982, 0.269694633316249, 0.270977834472433, 0.272646195720881, 0.275805117562413, 0.276456848951057, 0.28040054673329, 0.281313059618697, 0.28133351309225, 0.281812581699342, 0.282959054922685, 0.285985574126244, 0.28618732560426,
#> 0.288237168220803, 0.288417027564719, 0.290648308349773, 0.291757629951462, 0.292968772351742, 0.293585412902758, 0.293750792043284, 0.293758839834481, 0.294625013135374, 0.295750094112009, 0.296028222655877, 0.297161926981062, 0.297560029197484, 0.298344632610679, 0.298658029874787, 0.301930186571553, 0.303833421086892, 0.30599033809267, 0.306281309342012, 0.307273737154901, 0.310959493741393, 0.312329404754564, 0.314662620658055, 0.315396910067648, 0.315594685263932, 0.315731404349208, 0.316115506459028,
#> 0.317790219327435, 0.318212727084756, 0.318756407825276, 0.318848039023578, 0.321854551089928, 0.326400522142649, 0.326429924694821, 0.327313161687925, 0.327338520204648, 0.328267297474667, 0.329317163676023, 0.329380251467228, 0.330931987147778, 0.330953701864928, 0.333823317429051, 0.33596885856241, 0.337348550790921, 0.338219850324094, 0.339253881014884, 0.340119243832305, 0.344429030548781, 0.345683183986694, 0.345853600883856, 0.349299048539251, 0.349695475772023, 0.350486536743119, 0.350588162429631,
#> 0.351248814957216, 0.352704691933468, 0.354186728131026, 0.355901510221884, 0.356314577395096, 0.359530670568347, 0.359960122732446, 0.360042401123792, 0.360777561552823, 0.360873693600297, 0.361006100894883, 0.361534116789699, 0.362516305875033, 0.363712143152952, 0.364262431394309, 0.365486512426287, 0.366688103647903, 0.367329021682963, 0.367464390583336, 0.368559058057144, 0.369236068567261, 0.369340825127438, 0.371269882190973, 0.373410821193829, 0.375140478601679, 0.375875194789842, 0.376467330846936,
#> 0.377343045547605, 0.378641178831458, 0.378960735630244, 0.379946742206812, 0.381056858925149, 0.381981546059251, 0.383370670489967, 0.385183100355789, 0.387096277438104, 0.387481981189921, 0.388349752407521, 0.38956403802149, 0.391453241696581, 0.391542107099667, 0.392751928884536, 0.393671740312129, 0.393777719466016, 0.394606579793617, 0.395447959192097, 0.395998113555834, 0.396137897623703, 0.396409955108538, 0.396673975745216, 0.397771646967158, 0.397993594175205, 0.398619815241545, 0.39930623723194,
#> 0.401598005788401, 0.401990393176675, 0.405270203948021, 0.405728721991181, 0.406697055324912, 0.406853629974648, 0.407361345365644, 0.407593891955912, 0.407973201479763, 0.408853879896924, 0.411679971730337, 0.412256387062371, 0.412472855532542, 0.414047828642651, 0.414248683257028, 0.415961450664327, 0.417264371411875, 0.417269926285371, 0.417966035660356, 0.419485852587968, 0.42137112445198, 0.423704410903156, 0.424597555538639, 0.42943161376752, 0.429831350920722, 0.43052065372467, 0.430898792576045,
#> 0.43100341851823, 0.431522403843701, 0.432788166450337, 0.432930769631639, 0.43359481333755, 0.435386642348021, 0.435718158725649, 0.437340782955289, 0.437655055196956, 0.438137200428173, 0.438757269177586, 0.438799632480368, 0.439149999525398, 0.440223303856328, 0.441499187611043, 0.442186920205131, 0.443733628606424, 0.444789632922038, 0.446997430175543, 0.449733827495947, 0.449776821769774, 0.451120329322293, 0.451336304657161, 0.451858439715579, 0.452552471542731, 0.453089235117659, 0.455840147798881,
#> 0.456749180797487, 0.458160649519414, 0.459017724497244, 0.459139019018039, 0.460747514152899, 0.46650480106473, 0.466509439516813, 0.466597515856847, 0.468089348869398, 0.468959034187719, 0.469878912670538, 0.47104003559798, 0.47175561147742, 0.473137095803395, 0.473980569280684, 0.475545125314966, 0.476504088379443, 0.477587363682687, 0.481484478106722, 0.483298178529367, 0.484119494911283, 0.484802823513746, 0.488288650754839, 0.490392812760547, 0.495559869799763, 0.495834674919024, 0.495889646699652,
#> 0.495991045143455, 0.496825250331312, 0.497852969681844, 0.501247070264071, 0.501423423178494, 0.502264236565679, 0.502747076796368, 0.503026663092896, 0.503146104514599, 0.503395081730559, 0.504012379329652, 0.508309862110764, 0.508893572259694, 0.510964883957058, 0.512136830715463, 0.513866862049326, 0.514402497094125, 0.514744562795386, 0.515355301322415, 0.515585619490594, 0.516034910222515, 0.516804101876915, 0.517485157353804, 0.517681184923276, 0.519060970284045, 0.521528884768486, 0.522895360132679,
#> 0.523428416578099, 0.523650436662138, 0.524280134355649, 0.525731408968568, 0.526106729870662, 0.526830323971808, 0.528322355356067, 0.528709272388369, 0.529934776481241, 0.530409487430006, 0.531741869403049, 0.532565164146945, 0.53384270472452, 0.535217588068917, 0.536133256973699, 0.538079284364358, 0.538192446576431, 0.538633120479062, 0.538760172203183, 0.540337681537494, 0.54043101449497, 0.542075810953975, 0.542837154818699, 0.543792691081762, 0.543831168906763, 0.544705166015774, 0.545425235992298,
#> 0.545723421266302, 0.545915438327938, 0.546367618953809, 0.546804774785414, 0.548591439146549, 0.5492207063362, 0.54946154775098, 0.550862395204604, 0.551290672272444, 0.552318777190521, 0.55247233598493, 0.552900205599144, 0.559383239364251, 0.559491197112948, 0.56438572704792, 0.56658627698198, 0.566909784451127, 0.567406318150461, 0.569740539882332, 0.570957343792543, 0.571560842683539, 0.57454437110573, 0.576187420636415, 0.578461039112881, 0.578630845760927, 0.578781491611153, 0.581366044003516,
#> 0.584308366058394, 0.586222191574052, 0.587346678134054, 0.588078625965863, 0.588247172767296, 0.589837556472048, 0.590643109753728, 0.59340836503543, 0.593836588552222, 0.594472281169146, 0.594819201389328, 0.595954202115536, 0.598474994301796, 0.600037338444963, 0.602003859123215, 0.602144769858569, 0.602222412126139, 0.603750402340665, 0.604173966916278, 0.605368442134932, 0.60564771364443, 0.606558852363378, 0.610299621941522, 0.612082786625251, 0.612376979552209, 0.613101419527084, 0.614005603594705,
#> 0.614524137461558, 0.614753181813285, 0.616014427971095, 0.616498636547476, 0.61691455822438, 0.618977224919945, 0.622798821423203, 0.622922778129578, 0.623061030171812, 0.626456494210288, 0.626966629410163, 0.62715786579065, 0.627365985419601, 0.62845016666688, 0.628682107897475, 0.629416507901624, 0.630411718972027, 0.630542930448428, 0.632092875195667, 0.633231563260779, 0.634520042454824, 0.634544272208586, 0.63566812267527, 0.636446596588939, 0.637685551773757, 0.638883732957765, 0.639060988556594,
#> 0.640680484939367, 0.641383435344324, 0.641941264504567, 0.643069031648338, 0.643738753627986, 0.644469760591164, 0.645054772496223, 0.646727143321186, 0.646781304851174, 0.64764387672767, 0.648082781815901, 0.648501313757151, 0.649506189860404, 0.650298700900748, 0.650343898683786, 0.650485265767202, 0.651118639623746, 0.652000183938071, 0.652479521231726, 0.652510039275512, 0.652967276517302, 0.653699397109449, 0.655982626136392, 0.65657958202064, 0.656856436515227, 0.656995829660445, 0.657298437319696,
#> 0.658322231844068, 0.661077789729461, 0.661573967430741, 0.664285492850468, 0.664530064212158, 0.665152461268008, 0.665890787029639, 0.666092011611909, 0.667815764434636, 0.668674502521753, 0.670548492344096, 0.671395304379985, 0.673447825945914, 0.673856367124245, 0.675023473566398, 0.675208503613248, 0.675661901943386, 0.676610797178, 0.677698523038998, 0.677978094667196, 0.677988059120253, 0.679920632624999, 0.680798615328968, 0.68464411306195, 0.686063104076311, 0.686513980152085, 0.686569210607558,
#> 0.690007234923542, 0.690405166242272, 0.690719101810828, 0.690725848078728, 0.690917830914259, 0.696488575544208, 0.696583657991141, 0.697655427269638, 0.700714985607192, 0.700767503585666, 0.701550335623324, 0.704463991336524, 0.70467192796059, 0.706139502348378, 0.706946498015895, 0.707500395365059, 0.708293445874006, 0.708484261762351, 0.708732047816738, 0.708912507165223, 0.710274052573368, 0.71097124973312, 0.71175341703929, 0.711955302860588, 0.713411951670423, 0.714371634181589, 0.715186134213582,
#> 0.715423076646402, 0.715809417888522, 0.719013958238065, 0.719317963346839, 0.719522785162553, 0.721405047690496, 0.721759729320183, 0.723450553836301, 0.72493509715423, 0.725763959344476, 0.726285317447037, 0.726948852883652, 0.727702046744525, 0.727905224077404, 0.72817997331731, 0.728305660188198, 0.729761208640411, 0.730338460532948, 0.73110364517197, 0.731229154625908, 0.732910666614771, 0.73297052201815, 0.733729686122388, 0.733746317680925, 0.734444106230512, 0.735729368403554, 0.737123666564003,
#> 0.737795152235776, 0.738091561477631, 0.73925079475157, 0.739589563803747, 0.739872505422682, 0.741845581447706, 0.742326180217788, 0.742623895406723, 0.742924000136554, 0.743018237408251, 0.743621315108612, 0.746071676257998, 0.747848246712238, 0.748737998073921, 0.749272652203217, 0.750239846063778, 0.750247884308919, 0.750603328226134, 0.751013845670968, 0.75395310902968, 0.754406645428389, 0.756041088141501, 0.758053619647399, 0.759158379863948, 0.759170953882858, 0.759677961235866, 0.76076113851741,
#> 0.760858229827136, 0.760893133934587, 0.761059405049309, 0.761255360208452, 0.762110914569348, 0.762819469673559, 0.763474826235324, 0.763934360351413, 0.76546558062546, 0.769013522192836, 0.769048036308959, 0.770643183263019, 0.772161534056067, 0.772408777615055, 0.772476847516373, 0.772730364464223, 0.773008481133729, 0.773027691291645, 0.774801583494991, 0.777306163217872, 0.777645506896079, 0.778292785864323, 0.778454303508624, 0.778970633633435, 0.781122568063438, 0.782154128421098, 0.783140670042485,
#> 0.783727515023202, 0.78417244553566, 0.784201819682494, 0.784709724131972, 0.785951164085418, 0.78942035860382, 0.791907660430297, 0.792102944571525, 0.792735469993204, 0.794477666728199, 0.795377714792266, 0.796250590356067, 0.800097748171538, 0.80127512710169, 0.803144115256146, 0.803412572713569, 0.805463733617216, 0.809108371380717, 0.809296958846971, 0.809696201002225, 0.814045199658722, 0.814231365453452, 0.814596203621477, 0.815023199422285, 0.815097741549835, 0.816187682561576, 0.817073642974719,
#> 0.817513144109398, 0.819082446629182, 0.82403287710622, 0.824915395118296, 0.825307863531634, 0.826700376812369, 0.827501414343715, 0.827921322081238, 0.828014417784289, 0.831581892445683, 0.83168991911225, 0.834508620202541, 0.836075305938721, 0.836446250556037, 0.837061725789681, 0.838375008897856, 0.838629989651963, 0.839265023823828, 0.841558910673484, 0.84309694217518, 0.843870285665616, 0.844163393368945, 0.844231416238472, 0.845540054840967, 0.845703554572538, 0.847479980904609, 0.847637428436428,
#> 0.849882774055004, 0.850553432479501, 0.850721327355132, 0.850974229164422, 0.851743174018338, 0.852432376472279, 0.852844803361222, 0.853635872947052, 0.853723727166653, 0.854173652129248, 0.854383887955919, 0.854959498858079, 0.855881966184825, 0.856081013800576, 0.856132156681269, 0.856522594578564, 0.858328149653971, 0.859285893617198, 0.859722247580066, 0.864375276723877, 0.864441073266789, 0.866615703329444, 0.869459297973663, 0.870324538787827, 0.870727153494954, 0.872587442398071, 0.872630304889753,
#> 0.873417352326214, 0.873739800183102, 0.874176835641265, 0.875357910292223, 0.875383010366932, 0.875410763313994, 0.875621909275651, 0.876767661655322, 0.880309032043442, 0.880933094071224, 0.880934217246249, 0.880956979934126, 0.881019168300554, 0.881312924902886, 0.882156537845731, 0.884369102073833, 0.884742884431034, 0.885090930387378, 0.885247568367049, 0.885660339612514, 0.885710798436776, 0.886374238179997, 0.886550510535017, 0.887723417486995, 0.887872519437224, 0.888015177566558, 0.890028999885544,
#> 0.891284866956994, 0.892745704157278, 0.894122657133266, 0.896378374658525, 0.897304410114884, 0.897902505705133, 0.898077371064574, 0.898567755473778, 0.902923798188567, 0.903877350268885, 0.906051577767357, 0.90618684887886, 0.906491699861363, 0.906879458576441, 0.909420361043885, 0.913158010691404, 0.913685443112627, 0.91429804963991, 0.916229565627873, 0.916653896914795, 0.918010637164116, 0.918337844777852, 0.920275803189725, 0.921526176389307, 0.921799641335383, 0.922474455786869, 0.922564618522301,
#> 0.923789556138217, 0.923960765823722, 0.924520392203704, 0.925656766165048, 0.926283334614709, 0.927281761541963, 0.927870102226734, 0.930233496706933, 0.930281535722315, 0.931795864831656, 0.933358375681564, 0.934172523673624, 0.934998403536156, 0.935517142061144, 0.936428893357515, 0.936487426050007, 0.937330218032002, 0.938152686925605, 0.942132205469534, 0.943459724308923, 0.943516464205459, 0.944774803239852, 0.945220490684733, 0.945334274321795, 0.94568784837611, 0.946294847643003, 0.946558905066922,
#> 0.947317183716223, 0.947318266145885, 0.947913724463433, 0.948578845243901, 0.94968924135901, 0.951395966811106, 0.952429423108697, 0.952809649286792, 0.952824799809605, 0.955866285832599, 0.957919124513865, 0.958503520581871, 0.958727898774669, 0.95948260743171, 0.961116276681423, 0.961571368388832, 0.962416304508224, 0.963181753642857, 0.963494028197601, 0.964343837695196, 0.964625613065436, 0.965119112050161, 0.965240417979658, 0.966159525094554, 0.966209195787087, 0.967139130458236, 0.968462549848482,
#> 0.968637502286583, 0.969707059208304, 0.969791890354827, 0.970262279734015, 0.970681362319738, 0.970845024799928, 0.97104093618691, 0.972844217903912, 0.973622557939962, 0.9748362575192, 0.975818040780723, 0.976875316584483, 0.97903377446346, 0.979293410433456, 0.97947422042489, 0.981531849130988, 0.981541850371286, 0.982190598966554, 0.982668666634709, 0.983266869559884, 0.983283746987581, 0.983511551516131, 0.983525407966226, 0.98456546664238, 0.986508697737008, 0.992580709746107, 0.993118094280362,
#> 0.994194674305618, 0.994832404656336, 0.995123026426882, 0.995962664484978, 0.996033379342407, 0.996412934735417, 0.999652457190678), N = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), cumN = 1:1000))