Mathematical and statistical functions for the Empirical distribution, which is commonly used in sampling such as MCMC.

Value

Returns an R6 object inheriting from class SDistribution.

Details

The Empirical distribution is defined by the pmf, $$p(x) = \sum I(x = x_i) / k$$ for \(x_i \epsilon R, i = 1,...,k\).

Sampling from this distribution is performed with the sample function with the elements given as the support set and uniform probabilities. Sampling is performed with replacement, which is consistent with other distributions but non-standard for Empirical distributions. Use simulateEmpiricalDistribution to sample without replacement.

The cdf and quantile assumes that the elements are supplied in an indexed order (otherwise the results are meaningless).

Distribution support

The distribution is supported on \(x_1,...,x_k\).

Default Parameterisation

Emp(samples = 1)

Omitted Methods

N/A

Also known as

N/A

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

Super classes

distr6::Distribution -> distr6::SDistribution -> Empirical

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

alias

Alias of the distribution.

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage

Empirical$new(samples = NULL, decorators = NULL)

Arguments

samples

(numeric())
Vector of observed samples, see examples.

decorators

(character())
Decorators to add to the distribution during construction.

Examples

Empirical$new(runif(1000))


Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.

Usage

Empirical$mean(...)

Arguments

...

Unused.


Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage

Empirical$mode(which = "all")

Arguments

which

(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.


Method variance()

The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage

Empirical$variance(...)

Arguments

...

Unused.


Method skewness()

The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

Usage

Empirical$skewness(...)

Arguments

...

Unused.


Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage

Empirical$kurtosis(excess = TRUE, ...)

Arguments

excess

(logical(1))
If TRUE (default) excess kurtosis returned.

...

Unused.


Method entropy()

The entropy of a (discrete) distribution is defined by $$- \sum (f_X)log(f_X)$$ where \(f_X\) is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage

Empirical$entropy(base = 2, ...)

Arguments

base

(integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

...

Unused.


Method mgf()

The moment generating function is defined by $$mgf_X(t) = E_X[exp(xt)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Empirical$mgf(t, ...)

Arguments

t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method cf()

The characteristic function is defined by $$cf_X(t) = E_X[exp(xti)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Empirical$cf(t, ...)

Arguments

t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method pgf()

The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Empirical$pgf(z, ...)

Arguments

z

(integer(1))
z integer to evaluate probability generating function at.

...

Unused.


Method setParameterValue()

Sets the value(s) of the given parameter(s).

Usage

Empirical$setParameterValue(
  ...,
  lst = NULL,
  error = "warn",
  resolveConflicts = FALSE
)

Arguments

...

ANY
Named arguments of parameters to set values for. See examples.

lst

(list(1))
Alternative argument for passing parameters. List names should be parameter names and list values are the new values to set.

error

(character(1))
If "warn" then returns a warning on error, otherwise breaks if "stop".

resolveConflicts

(logical(1))
If FALSE (default) throws error if conflicting parameterisations are provided, otherwise automatically resolves them by removing all conflicting parameters.


Method clone()

The objects of this class are cloneable with this method.

Usage

Empirical$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples


## ------------------------------------------------
## Method `Empirical$new`
## ------------------------------------------------

Empirical$new(runif(1000))
#> Emp(data = list(samples = c(0.000103691359981894, 0.00164648867212236, 0.00247683003544807, 0.00249242829158902, 0.00401845388114452, 0.00408198102377355, 0.00449630804359913, 0.00720894057303667, 0.00750555354170501, 0.00865807477384806, 0.0108724641613662, 0.0132726018782705, 0.013695368077606, 0.0147188026458025, 0.0147690158337355, 0.0150322786066681, 0.0160031442064792, 0.0170156876556575, 0.0177699560299516, 0.0185314333066344, 0.0189061700366437, 0.019525250652805, 0.0196958889719099, 0.0221170505974442, 
#> 0.0238767648115754, 0.0248860311694443, 0.0266246700193733, 0.0270194539334625, 0.028712565312162, 0.0291041533928365, 0.0309238962363452, 0.0310260178521276, 0.0320927088614553, 0.0335040374193341, 0.0340522730257362, 0.0344292330555618, 0.0348996436223388, 0.0359098089393228, 0.0366794092115015, 0.0381407886743546, 0.0384149765595794, 0.038526406744495, 0.0385718832258135, 0.0395206899847835, 0.0399406552314758, 0.0430012932047248, 0.0433284393511713, 0.0435569984838367, 0.0458493106998503, 0.046063638990745, 
#> 0.0469350144267082, 0.0502011657226831, 0.0510624526068568, 0.0527009717188776, 0.056073043262586, 0.056558586191386, 0.0581756506580859, 0.0590829530265182, 0.0631373389624059, 0.0648830933496356, 0.065636639483273, 0.067319828318432, 0.0683417033869773, 0.0684064193628728, 0.0687954481691122, 0.0699455172289163, 0.0704171205870807, 0.0709647727198899, 0.0713426703587174, 0.0715497385244817, 0.0729944417253137, 0.0732091320678592, 0.0746336323209107, 0.07588304951787, 0.076176312752068, 0.0769833216909319, 
#> 0.0770898594055325, 0.0783282660413533, 0.0783842522650957, 0.0791664109565318, 0.0796190109103918, 0.0808449615724385, 0.0818330235779285, 0.0844361330382526, 0.0852247001603246, 0.085870444541797, 0.0860389897134155, 0.087183809839189, 0.0877202423289418, 0.0898489013779908, 0.091200975002721, 0.091969795525074, 0.0923966427799314, 0.0939681925810874, 0.0940303672105074, 0.0946227721869946, 0.0959265041165054, 0.0979780545458198, 0.0985663856845349, 0.0990097080357373, 0.100656457711011, 0.101095365360379, 
#> 0.101313760969788, 0.101950954878703, 0.104046371765435, 0.104306503897533, 0.106346960878, 0.107331892941147, 0.107689367607236, 0.107744531240314, 0.108949673594907, 0.109048785641789, 0.109670019010082, 0.110329848947003, 0.111680223839357, 0.111789910122752, 0.113047500839457, 0.114378662081435, 0.115189302247018, 0.116309177130461, 0.118044569622725, 0.118276783032343, 0.118683209177107, 0.120041428366676, 0.121108880266547, 0.12179663986899, 0.121864625485614, 0.124373451108113, 0.125789226964116, 
#> 0.125856270780787, 0.126492621842772, 0.126666583819315, 0.127557650906965, 0.128115758299828, 0.128602578304708, 0.129016225924715, 0.130024369573221, 0.131418510107324, 0.133348547620699, 0.133507662685588, 0.135991170769557, 0.136628583772108, 0.137970441021025, 0.138059550896287, 0.138074840884656, 0.138926521642134, 0.139359317719936, 0.142943662358448, 0.143266438273713, 0.143559225834906, 0.143803449813277, 0.145115376915783, 0.145315843401477, 0.145407346775755, 0.148463048506528, 0.148710346780717, 
#> 0.148782722884789, 0.150928949937224, 0.151495558675379, 0.155294531024992, 0.156360570108518, 0.159034826094285, 0.15922928112559, 0.159274747595191, 0.161409182474017, 0.162198703736067, 0.163412279449403, 0.163623198168352, 0.164675234118477, 0.165010989643633, 0.165283794514835, 0.166161776287481, 0.166490767849609, 0.166603677673265, 0.168132450431585, 0.168414602987468, 0.170263659209013, 0.170395507011563, 0.172351888613775, 0.173224841943011, 0.174386327620596, 0.174868220463395, 0.177759329089895, 
#> 0.178613093914464, 0.179034290602431, 0.179127504583448, 0.18081600125879, 0.18237791932188, 0.18331205425784, 0.18332012812607, 0.185446366202086, 0.185653790598735, 0.190525120124221, 0.192943317815661, 0.192943505709991, 0.193312666844577, 0.194759515346959, 0.196219522040337, 0.197463317075744, 0.198986241826788, 0.199000779306516, 0.199160666903481, 0.200559966498986, 0.201238424051553, 0.202698964858428, 0.203208829043433, 0.203664392232895, 0.203900680411607, 0.204030646011233, 0.204329062951729, 
#> 0.205179745331407, 0.205828856211156, 0.20680187526159, 0.20962158520706, 0.2101352927275, 0.210310738068074, 0.212967462604865, 0.21314931102097, 0.214942595688626, 0.215272658271715, 0.216099976096302, 0.216380230383947, 0.216625959379598, 0.216995889088139, 0.217905807076022, 0.218338430393487, 0.218562992988154, 0.219235972734168, 0.219439741224051, 0.22002470633015, 0.224765427643433, 0.225115388631821, 0.226108731469139, 0.226481329649687, 0.232457197736949, 0.237697737524286, 0.238379750866443, 
#> 0.238453106489033, 0.23927381564863, 0.239288098411635, 0.239638329250738, 0.240461234701797, 0.24159372295253, 0.241776089882478, 0.241788821527734, 0.242454329272732, 0.24249267578125, 0.242587020387873, 0.243392595089972, 0.243791283341125, 0.244483520975336, 0.244927987456322, 0.246750867227092, 0.247077947948128, 0.247219110373408, 0.248734866967425, 0.250523259630427, 0.25157762831077, 0.252699653152376, 0.253311580745503, 0.254773765802383, 0.254818350775167, 0.255749259144068, 0.256982919061556, 
#> 0.258426348445937, 0.25920274364762, 0.259509476367384, 0.259818243561313, 0.260058912448585, 0.261186117772013, 0.261237550061196, 0.261856944067404, 0.262909896671772, 0.26330864848569, 0.263841792242602, 0.264481923077255, 0.265187191078439, 0.265793564263731, 0.268330775666982, 0.269694633316249, 0.270977834472433, 0.272646195720881, 0.275805117562413, 0.276456848951057, 0.28040054673329, 0.281313059618697, 0.28133351309225, 0.281812581699342, 0.282959054922685, 0.285985574126244, 0.28618732560426, 
#> 0.288237168220803, 0.288417027564719, 0.290648308349773, 0.291757629951462, 0.292968772351742, 0.293585412902758, 0.293750792043284, 0.293758839834481, 0.294625013135374, 0.295750094112009, 0.296028222655877, 0.297161926981062, 0.297560029197484, 0.298344632610679, 0.298658029874787, 0.301930186571553, 0.303833421086892, 0.30599033809267, 0.306281309342012, 0.307273737154901, 0.310959493741393, 0.312329404754564, 0.314662620658055, 0.315396910067648, 0.315594685263932, 0.315731404349208, 0.316115506459028, 
#> 0.317790219327435, 0.318212727084756, 0.318756407825276, 0.318848039023578, 0.321854551089928, 0.326400522142649, 0.326429924694821, 0.327313161687925, 0.327338520204648, 0.328267297474667, 0.329317163676023, 0.329380251467228, 0.330931987147778, 0.330953701864928, 0.333823317429051, 0.33596885856241, 0.337348550790921, 0.338219850324094, 0.339253881014884, 0.340119243832305, 0.344429030548781, 0.345683183986694, 0.345853600883856, 0.349299048539251, 0.349695475772023, 0.350486536743119, 0.350588162429631, 
#> 0.351248814957216, 0.352704691933468, 0.354186728131026, 0.355901510221884, 0.356314577395096, 0.359530670568347, 0.359960122732446, 0.360042401123792, 0.360777561552823, 0.360873693600297, 0.361006100894883, 0.361534116789699, 0.362516305875033, 0.363712143152952, 0.364262431394309, 0.365486512426287, 0.366688103647903, 0.367329021682963, 0.367464390583336, 0.368559058057144, 0.369236068567261, 0.369340825127438, 0.371269882190973, 0.373410821193829, 0.375140478601679, 0.375875194789842, 0.376467330846936, 
#> 0.377343045547605, 0.378641178831458, 0.378960735630244, 0.379946742206812, 0.381056858925149, 0.381981546059251, 0.383370670489967, 0.385183100355789, 0.387096277438104, 0.387481981189921, 0.388349752407521, 0.38956403802149, 0.391453241696581, 0.391542107099667, 0.392751928884536, 0.393671740312129, 0.393777719466016, 0.394606579793617, 0.395447959192097, 0.395998113555834, 0.396137897623703, 0.396409955108538, 0.396673975745216, 0.397771646967158, 0.397993594175205, 0.398619815241545, 0.39930623723194, 
#> 0.401598005788401, 0.401990393176675, 0.405270203948021, 0.405728721991181, 0.406697055324912, 0.406853629974648, 0.407361345365644, 0.407593891955912, 0.407973201479763, 0.408853879896924, 0.411679971730337, 0.412256387062371, 0.412472855532542, 0.414047828642651, 0.414248683257028, 0.415961450664327, 0.417264371411875, 0.417269926285371, 0.417966035660356, 0.419485852587968, 0.42137112445198, 0.423704410903156, 0.424597555538639, 0.42943161376752, 0.429831350920722, 0.43052065372467, 0.430898792576045, 
#> 0.43100341851823, 0.431522403843701, 0.432788166450337, 0.432930769631639, 0.43359481333755, 0.435386642348021, 0.435718158725649, 0.437340782955289, 0.437655055196956, 0.438137200428173, 0.438757269177586, 0.438799632480368, 0.439149999525398, 0.440223303856328, 0.441499187611043, 0.442186920205131, 0.443733628606424, 0.444789632922038, 0.446997430175543, 0.449733827495947, 0.449776821769774, 0.451120329322293, 0.451336304657161, 0.451858439715579, 0.452552471542731, 0.453089235117659, 0.455840147798881, 
#> 0.456749180797487, 0.458160649519414, 0.459017724497244, 0.459139019018039, 0.460747514152899, 0.46650480106473, 0.466509439516813, 0.466597515856847, 0.468089348869398, 0.468959034187719, 0.469878912670538, 0.47104003559798, 0.47175561147742, 0.473137095803395, 0.473980569280684, 0.475545125314966, 0.476504088379443, 0.477587363682687, 0.481484478106722, 0.483298178529367, 0.484119494911283, 0.484802823513746, 0.488288650754839, 0.490392812760547, 0.495559869799763, 0.495834674919024, 0.495889646699652, 
#> 0.495991045143455, 0.496825250331312, 0.497852969681844, 0.501247070264071, 0.501423423178494, 0.502264236565679, 0.502747076796368, 0.503026663092896, 0.503146104514599, 0.503395081730559, 0.504012379329652, 0.508309862110764, 0.508893572259694, 0.510964883957058, 0.512136830715463, 0.513866862049326, 0.514402497094125, 0.514744562795386, 0.515355301322415, 0.515585619490594, 0.516034910222515, 0.516804101876915, 0.517485157353804, 0.517681184923276, 0.519060970284045, 0.521528884768486, 0.522895360132679, 
#> 0.523428416578099, 0.523650436662138, 0.524280134355649, 0.525731408968568, 0.526106729870662, 0.526830323971808, 0.528322355356067, 0.528709272388369, 0.529934776481241, 0.530409487430006, 0.531741869403049, 0.532565164146945, 0.53384270472452, 0.535217588068917, 0.536133256973699, 0.538079284364358, 0.538192446576431, 0.538633120479062, 0.538760172203183, 0.540337681537494, 0.54043101449497, 0.542075810953975, 0.542837154818699, 0.543792691081762, 0.543831168906763, 0.544705166015774, 0.545425235992298, 
#> 0.545723421266302, 0.545915438327938, 0.546367618953809, 0.546804774785414, 0.548591439146549, 0.5492207063362, 0.54946154775098, 0.550862395204604, 0.551290672272444, 0.552318777190521, 0.55247233598493, 0.552900205599144, 0.559383239364251, 0.559491197112948, 0.56438572704792, 0.56658627698198, 0.566909784451127, 0.567406318150461, 0.569740539882332, 0.570957343792543, 0.571560842683539, 0.57454437110573, 0.576187420636415, 0.578461039112881, 0.578630845760927, 0.578781491611153, 0.581366044003516, 
#> 0.584308366058394, 0.586222191574052, 0.587346678134054, 0.588078625965863, 0.588247172767296, 0.589837556472048, 0.590643109753728, 0.59340836503543, 0.593836588552222, 0.594472281169146, 0.594819201389328, 0.595954202115536, 0.598474994301796, 0.600037338444963, 0.602003859123215, 0.602144769858569, 0.602222412126139, 0.603750402340665, 0.604173966916278, 0.605368442134932, 0.60564771364443, 0.606558852363378, 0.610299621941522, 0.612082786625251, 0.612376979552209, 0.613101419527084, 0.614005603594705, 
#> 0.614524137461558, 0.614753181813285, 0.616014427971095, 0.616498636547476, 0.61691455822438, 0.618977224919945, 0.622798821423203, 0.622922778129578, 0.623061030171812, 0.626456494210288, 0.626966629410163, 0.62715786579065, 0.627365985419601, 0.62845016666688, 0.628682107897475, 0.629416507901624, 0.630411718972027, 0.630542930448428, 0.632092875195667, 0.633231563260779, 0.634520042454824, 0.634544272208586, 0.63566812267527, 0.636446596588939, 0.637685551773757, 0.638883732957765, 0.639060988556594, 
#> 0.640680484939367, 0.641383435344324, 0.641941264504567, 0.643069031648338, 0.643738753627986, 0.644469760591164, 0.645054772496223, 0.646727143321186, 0.646781304851174, 0.64764387672767, 0.648082781815901, 0.648501313757151, 0.649506189860404, 0.650298700900748, 0.650343898683786, 0.650485265767202, 0.651118639623746, 0.652000183938071, 0.652479521231726, 0.652510039275512, 0.652967276517302, 0.653699397109449, 0.655982626136392, 0.65657958202064, 0.656856436515227, 0.656995829660445, 0.657298437319696, 
#> 0.658322231844068, 0.661077789729461, 0.661573967430741, 0.664285492850468, 0.664530064212158, 0.665152461268008, 0.665890787029639, 0.666092011611909, 0.667815764434636, 0.668674502521753, 0.670548492344096, 0.671395304379985, 0.673447825945914, 0.673856367124245, 0.675023473566398, 0.675208503613248, 0.675661901943386, 0.676610797178, 0.677698523038998, 0.677978094667196, 0.677988059120253, 0.679920632624999, 0.680798615328968, 0.68464411306195, 0.686063104076311, 0.686513980152085, 0.686569210607558, 
#> 0.690007234923542, 0.690405166242272, 0.690719101810828, 0.690725848078728, 0.690917830914259, 0.696488575544208, 0.696583657991141, 0.697655427269638, 0.700714985607192, 0.700767503585666, 0.701550335623324, 0.704463991336524, 0.70467192796059, 0.706139502348378, 0.706946498015895, 0.707500395365059, 0.708293445874006, 0.708484261762351, 0.708732047816738, 0.708912507165223, 0.710274052573368, 0.71097124973312, 0.71175341703929, 0.711955302860588, 0.713411951670423, 0.714371634181589, 0.715186134213582, 
#> 0.715423076646402, 0.715809417888522, 0.719013958238065, 0.719317963346839, 0.719522785162553, 0.721405047690496, 0.721759729320183, 0.723450553836301, 0.72493509715423, 0.725763959344476, 0.726285317447037, 0.726948852883652, 0.727702046744525, 0.727905224077404, 0.72817997331731, 0.728305660188198, 0.729761208640411, 0.730338460532948, 0.73110364517197, 0.731229154625908, 0.732910666614771, 0.73297052201815, 0.733729686122388, 0.733746317680925, 0.734444106230512, 0.735729368403554, 0.737123666564003, 
#> 0.737795152235776, 0.738091561477631, 0.73925079475157, 0.739589563803747, 0.739872505422682, 0.741845581447706, 0.742326180217788, 0.742623895406723, 0.742924000136554, 0.743018237408251, 0.743621315108612, 0.746071676257998, 0.747848246712238, 0.748737998073921, 0.749272652203217, 0.750239846063778, 0.750247884308919, 0.750603328226134, 0.751013845670968, 0.75395310902968, 0.754406645428389, 0.756041088141501, 0.758053619647399, 0.759158379863948, 0.759170953882858, 0.759677961235866, 0.76076113851741, 
#> 0.760858229827136, 0.760893133934587, 0.761059405049309, 0.761255360208452, 0.762110914569348, 0.762819469673559, 0.763474826235324, 0.763934360351413, 0.76546558062546, 0.769013522192836, 0.769048036308959, 0.770643183263019, 0.772161534056067, 0.772408777615055, 0.772476847516373, 0.772730364464223, 0.773008481133729, 0.773027691291645, 0.774801583494991, 0.777306163217872, 0.777645506896079, 0.778292785864323, 0.778454303508624, 0.778970633633435, 0.781122568063438, 0.782154128421098, 0.783140670042485, 
#> 0.783727515023202, 0.78417244553566, 0.784201819682494, 0.784709724131972, 0.785951164085418, 0.78942035860382, 0.791907660430297, 0.792102944571525, 0.792735469993204, 0.794477666728199, 0.795377714792266, 0.796250590356067, 0.800097748171538, 0.80127512710169, 0.803144115256146, 0.803412572713569, 0.805463733617216, 0.809108371380717, 0.809296958846971, 0.809696201002225, 0.814045199658722, 0.814231365453452, 0.814596203621477, 0.815023199422285, 0.815097741549835, 0.816187682561576, 0.817073642974719, 
#> 0.817513144109398, 0.819082446629182, 0.82403287710622, 0.824915395118296, 0.825307863531634, 0.826700376812369, 0.827501414343715, 0.827921322081238, 0.828014417784289, 0.831581892445683, 0.83168991911225, 0.834508620202541, 0.836075305938721, 0.836446250556037, 0.837061725789681, 0.838375008897856, 0.838629989651963, 0.839265023823828, 0.841558910673484, 0.84309694217518, 0.843870285665616, 0.844163393368945, 0.844231416238472, 0.845540054840967, 0.845703554572538, 0.847479980904609, 0.847637428436428, 
#> 0.849882774055004, 0.850553432479501, 0.850721327355132, 0.850974229164422, 0.851743174018338, 0.852432376472279, 0.852844803361222, 0.853635872947052, 0.853723727166653, 0.854173652129248, 0.854383887955919, 0.854959498858079, 0.855881966184825, 0.856081013800576, 0.856132156681269, 0.856522594578564, 0.858328149653971, 0.859285893617198, 0.859722247580066, 0.864375276723877, 0.864441073266789, 0.866615703329444, 0.869459297973663, 0.870324538787827, 0.870727153494954, 0.872587442398071, 0.872630304889753, 
#> 0.873417352326214, 0.873739800183102, 0.874176835641265, 0.875357910292223, 0.875383010366932, 0.875410763313994, 0.875621909275651, 0.876767661655322, 0.880309032043442, 0.880933094071224, 0.880934217246249, 0.880956979934126, 0.881019168300554, 0.881312924902886, 0.882156537845731, 0.884369102073833, 0.884742884431034, 0.885090930387378, 0.885247568367049, 0.885660339612514, 0.885710798436776, 0.886374238179997, 0.886550510535017, 0.887723417486995, 0.887872519437224, 0.888015177566558, 0.890028999885544, 
#> 0.891284866956994, 0.892745704157278, 0.894122657133266, 0.896378374658525, 0.897304410114884, 0.897902505705133, 0.898077371064574, 0.898567755473778, 0.902923798188567, 0.903877350268885, 0.906051577767357, 0.90618684887886, 0.906491699861363, 0.906879458576441, 0.909420361043885, 0.913158010691404, 0.913685443112627, 0.91429804963991, 0.916229565627873, 0.916653896914795, 0.918010637164116, 0.918337844777852, 0.920275803189725, 0.921526176389307, 0.921799641335383, 0.922474455786869, 0.922564618522301, 
#> 0.923789556138217, 0.923960765823722, 0.924520392203704, 0.925656766165048, 0.926283334614709, 0.927281761541963, 0.927870102226734, 0.930233496706933, 0.930281535722315, 0.931795864831656, 0.933358375681564, 0.934172523673624, 0.934998403536156, 0.935517142061144, 0.936428893357515, 0.936487426050007, 0.937330218032002, 0.938152686925605, 0.942132205469534, 0.943459724308923, 0.943516464205459, 0.944774803239852, 0.945220490684733, 0.945334274321795, 0.94568784837611, 0.946294847643003, 0.946558905066922, 
#> 0.947317183716223, 0.947318266145885, 0.947913724463433, 0.948578845243901, 0.94968924135901, 0.951395966811106, 0.952429423108697, 0.952809649286792, 0.952824799809605, 0.955866285832599, 0.957919124513865, 0.958503520581871, 0.958727898774669, 0.95948260743171, 0.961116276681423, 0.961571368388832, 0.962416304508224, 0.963181753642857, 0.963494028197601, 0.964343837695196, 0.964625613065436, 0.965119112050161, 0.965240417979658, 0.966159525094554, 0.966209195787087, 0.967139130458236, 0.968462549848482, 
#> 0.968637502286583, 0.969707059208304, 0.969791890354827, 0.970262279734015, 0.970681362319738, 0.970845024799928, 0.97104093618691, 0.972844217903912, 0.973622557939962, 0.9748362575192, 0.975818040780723, 0.976875316584483, 0.97903377446346, 0.979293410433456, 0.97947422042489, 0.981531849130988, 0.981541850371286, 0.982190598966554, 0.982668666634709, 0.983266869559884, 0.983283746987581, 0.983511551516131, 0.983525407966226, 0.98456546664238, 0.986508697737008, 0.992580709746107, 0.993118094280362, 
#> 0.994194674305618, 0.994832404656336, 0.995123026426882, 0.995962664484978, 0.996033379342407, 0.996412934735417, 0.999652457190678), N = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
#> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), cumN = 1:1000))