Mathematical and statistical functions for the Poisson distribution, which is commonly used to model the number of events occurring in at a constant, independent rate over an interval of time or space.

Value

Returns an R6 object inheriting from class SDistribution.

Details

The Poisson distribution parameterised with arrival rate, \(\lambda\), is defined by the pmf, $$f(x) = (\lambda^x * exp(-\lambda))/x!$$ for \(\lambda\) > 0.

Distribution support

The distribution is supported on the Naturals.

Default Parameterisation

Pois(rate = 1)

Omitted Methods

N/A

Also known as

N/A

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

Super classes

distr6::Distribution -> distr6::SDistribution -> Poisson

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

alias

Alias of the distribution.

packages

Packages required to be installed in order to construct the distribution.

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage

Poisson$new(rate = NULL, decorators = NULL)

Arguments

rate

(numeric(1))
Rate parameter of the distribution, defined on the positive Reals.

decorators

(character())
Decorators to add to the distribution during construction.


Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.

Usage

Poisson$mean(...)

Arguments

...

Unused.


Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage

Poisson$mode(which = "all")

Arguments

which

(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.


Method variance()

The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage

Poisson$variance(...)

Arguments

...

Unused.


Method skewness()

The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.

Usage

Poisson$skewness(...)

Arguments

...

Unused.


Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage

Poisson$kurtosis(excess = TRUE, ...)

Arguments

excess

(logical(1))
If TRUE (default) excess kurtosis returned.

...

Unused.


Method mgf()

The moment generating function is defined by $$mgf_X(t) = E_X[exp(xt)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Poisson$mgf(t, ...)

Arguments

t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method cf()

The characteristic function is defined by $$cf_X(t) = E_X[exp(xti)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Poisson$cf(t, ...)

Arguments

t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method pgf()

The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.

Usage

Poisson$pgf(z, ...)

Arguments

z

(integer(1))
z integer to evaluate probability generating function at.

...

Unused.


Method clone()

The objects of this class are cloneable with this method.

Usage

Poisson$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.