Mathematical and statistical functions for the Poisson distribution, which is commonly used to model the number of events occurring in at a constant, independent rate over an interval of time or space.
Returns an R6 object inheriting from class SDistribution.
The Poisson distribution parameterised with arrival rate, \(\lambda\), is defined by the pmf, $$f(x) = (\lambda^x * exp(-\lambda))/x!$$ for \(\lambda\) > 0.
The distribution is supported on the Naturals.
Pois(rate = 1)
N/A
N/A
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other continuous distributions:
Arcsine
,
BetaNoncentral
,
Beta
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Dirichlet
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Gompertz
,
Gumbel
,
InverseGamma
,
Laplace
,
Logistic
,
Loglogistic
,
Lognormal
,
MultivariateNormal
,
Normal
,
Pareto
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
Other univariate distributions:
Arcsine
,
Arrdist
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Empirical
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Geometric
,
Gompertz
,
Gumbel
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
Matdist
,
NegativeBinomial
,
Normal
,
Pareto
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
,
WeightedDiscrete
distr6::Distribution
-> distr6::SDistribution
-> Poisson
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
alias
Alias of the distribution.
packages
Packages required to be installed in order to construct the distribution.
Inherited methods
distr6::Distribution$cdf()
distr6::Distribution$confidence()
distr6::Distribution$correlation()
distr6::Distribution$getParameterValue()
distr6::Distribution$iqr()
distr6::Distribution$liesInSupport()
distr6::Distribution$liesInType()
distr6::Distribution$median()
distr6::Distribution$parameters()
distr6::Distribution$pdf()
distr6::Distribution$prec()
distr6::Distribution$print()
distr6::Distribution$quantile()
distr6::Distribution$rand()
distr6::Distribution$setParameterValue()
distr6::Distribution$stdev()
distr6::Distribution$strprint()
distr6::Distribution$summary()
distr6::Distribution$workingSupport()
new()
Creates a new instance of this R6 class.
Poisson$new(rate = NULL, decorators = NULL)
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.
mode()
The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
variance()
The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.
skewness()
The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.
kurtosis()
The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
mgf()
The moment generating function is defined by $$mgf_X(t) = E_X[exp(xt)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.
cf()
The characteristic function is defined by $$cf_X(t) = E_X[exp(xti)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.
pgf()
The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.