Mathematical and statistical functions for the Gumbel distribution, which is commonly used to model the maximum (or minimum) of a number of samples of different distributions, and is a special case of the Generalised Extreme Value distribution.
Returns an R6 object inheriting from class SDistribution.
The Gumbel distribution parameterised with location, \(\mu\), and scale, \(\beta\), is defined by the pdf, $$f(x) = exp(-(z + exp(-z)))/\beta$$ for \(z = (x-\mu)/\beta\), \(\mu \epsilon R\) and \(\beta > 0\).
The distribution is supported on the Reals.
Gumb(location = 0, scale = 1)
N/A
N/A
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other continuous distributions:
Arcsine
,
BetaNoncentral
,
Beta
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Dirichlet
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Gompertz
,
InverseGamma
,
Laplace
,
Logistic
,
Loglogistic
,
Lognormal
,
MultivariateNormal
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
Other univariate distributions:
Arcsine
,
Arrdist
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquaredNoncentral
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Empirical
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Geometric
,
Gompertz
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
Matdist
,
NegativeBinomial
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
,
WeightedDiscrete
distr6::Distribution
-> distr6::SDistribution
-> Gumbel
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
alias
Alias of the distribution.
packages
Packages required to be installed in order to construct the distribution.
Inherited methods
distr6::Distribution$cdf()
distr6::Distribution$confidence()
distr6::Distribution$correlation()
distr6::Distribution$getParameterValue()
distr6::Distribution$iqr()
distr6::Distribution$liesInSupport()
distr6::Distribution$liesInType()
distr6::Distribution$parameters()
distr6::Distribution$pdf()
distr6::Distribution$prec()
distr6::Distribution$print()
distr6::Distribution$quantile()
distr6::Distribution$rand()
distr6::Distribution$setParameterValue()
distr6::Distribution$stdev()
distr6::Distribution$strprint()
distr6::Distribution$summary()
distr6::Distribution$workingSupport()
new()
Creates a new instance of this R6 class.
Gumbel$new(location = NULL, scale = NULL, decorators = NULL)
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation $$E_X(X) = \sum p_X(x)*x$$ with an integration analogue for continuous distributions.
mode()
The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).
median()
Returns the median of the distribution. If an analytical expression is available
returns distribution median, otherwise if symmetric returns self$mean
, otherwise
returns self$quantile(0.5)
.
variance()
The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.
skewness()
The skewness of a distribution is defined by the third standardised moment, $$sk_X = E_X[\frac{x - \mu}{\sigma}^3]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution.
Apery's Constant to 16 significant figures is used in the calculation.
kurtosis()
The kurtosis of a distribution is defined by the fourth standardised moment, $$k_X = E_X[\frac{x - \mu}{\sigma}^4]$$ where \(E_X\) is the expectation of distribution X, \(\mu\) is the mean of the distribution and \(\sigma\) is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
entropy()
The entropy of a (discrete) distribution is defined by $$- \sum (f_X)log(f_X)$$ where \(f_X\) is the pdf of distribution X, with an integration analogue for continuous distributions.
mgf()
The moment generating function is defined by $$mgf_X(t) = E_X[exp(xt)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.
cf()
The characteristic function is defined by $$cf_X(t) = E_X[exp(xti)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.
pracma::gammaz()
is used in this function to allow complex inputs.
pgf()
The probability generating function is defined by $$pgf_X(z) = E_X[exp(z^x)]$$ where X is the distribution and \(E_X\) is the expectation of the distribution X.