Mathematical and statistical functions for the Sigmoid kernel defined by the pdf, $$f(x) = 2/\pi(exp(x) + exp(-x))^{-1}$$ over the support \(x \in R\).
The cdf and quantile functions are omitted as no closed form analytic expressions could be found, decorate with FunctionImputation for numeric results.
Other kernels:
Cosine
,
Epanechnikov
,
LogisticKernel
,
NormalKernel
,
Quartic
,
Silverman
,
TriangularKernel
,
Tricube
,
Triweight
,
UniformKernel
distr6::Distribution
-> distr6::Kernel
-> Sigmoid
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
Inherited methods
distr6::Distribution$cdf()
distr6::Distribution$confidence()
distr6::Distribution$correlation()
distr6::Distribution$getParameterValue()
distr6::Distribution$iqr()
distr6::Distribution$liesInSupport()
distr6::Distribution$liesInType()
distr6::Distribution$parameters()
distr6::Distribution$pdf()
distr6::Distribution$prec()
distr6::Distribution$print()
distr6::Distribution$quantile()
distr6::Distribution$rand()
distr6::Distribution$setParameterValue()
distr6::Distribution$stdev()
distr6::Distribution$strprint()
distr6::Distribution$summary()
distr6::Distribution$workingSupport()
distr6::Kernel$cdfSquared2Norm()
distr6::Kernel$mean()
distr6::Kernel$median()
distr6::Kernel$mode()
distr6::Kernel$skewness()
pdfSquared2Norm()
The squared 2-norm of the pdf is defined by $$\int_a^b (f_X(u))^2 du$$ where X is the Distribution, \(f_X\) is its pdf and \(a, b\) are the distribution support limits.
variance()
The variance of a distribution is defined by the formula $$var_X = E[X^2] - E[X]^2$$ where \(E_X\) is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.