Mathematical and statistical functions for the NormalKernel kernel defined by the pdf, f(x)=exp(−x2/2)/√2π over the support x∈\R.
We use the erf
and erfinv
error and inverse error functions from
pracma.
Other kernels:
Cosine
,
Epanechnikov
,
LogisticKernel
,
Quartic
,
Sigmoid
,
Silverman
,
TriangularKernel
,
Tricube
,
Triweight
,
UniformKernel
distr6::Distribution
-> distr6::Kernel
-> NormalKernel
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
packages
Packages required to be installed in order to construct the distribution.
distr6::Distribution$cdf()
distr6::Distribution$confidence()
distr6::Distribution$correlation()
distr6::Distribution$getParameterValue()
distr6::Distribution$iqr()
distr6::Distribution$liesInSupport()
distr6::Distribution$liesInType()
distr6::Distribution$parameters()
distr6::Distribution$pdf()
distr6::Distribution$prec()
distr6::Distribution$print()
distr6::Distribution$quantile()
distr6::Distribution$rand()
distr6::Distribution$setParameterValue()
distr6::Distribution$stdev()
distr6::Distribution$strprint()
distr6::Distribution$summary()
distr6::Distribution$workingSupport()
distr6::Kernel$cdfSquared2Norm()
distr6::Kernel$mean()
distr6::Kernel$median()
distr6::Kernel$mode()
distr6::Kernel$skewness()
pdfSquared2Norm()
The squared 2-norm of the pdf is defined by ∫ba(fX(u))2du where X is the Distribution, fX is its pdf and a,b are the distribution support limits.
variance()
The variance of a distribution is defined by the formula varX=E[X2]−E[X]2 where EX is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.