The Universal is defined as the Set containing all possible elements.
The Universal set is the default universe to all sets, and is the largest possible set.
The Universal set contains every single possible element. We denote the Universal set with V
instead of U to avoid confusion with the union symbol. The Universal set cardinality is set to
Inf where we assume Inf is greater than any Aleph or Beth numbers. The Universal set is
also responsible for a few set paradoxes, to resolve these we use the following results:
Let \(V\) be the universal set, \(S\) be any non-universal set, and \(0\) the empty set, then
$$V \cup S = V$$ $$V \cap S = S$$ $$S - V = 0$$ $$V^n = V$$ $$P(V) = V$$
Other special sets:
Complex,
ExtendedReals,
Integers,
Logicals,
Naturals,
NegIntegers,
NegRationals,
NegReals,
PosIntegers,
PosNaturals,
PosRationals,
PosReals,
Rationals,
Reals
set6::Set -> Universal
new()Create a new Universal object.
Universal$new()
The Universal set is the set containing every possible element.
A new Universal object.
equals()Tests if two sets are equal.
Universal$equals(x, all = FALSE)
If all is TRUE then returns TRUE if all x are equal to the Set, otherwise
FALSE. If all is FALSE then returns a vector of logicals corresponding to each individual
element of x.
Infix operators can be used for:
| Equal | == |
| Not equal | != |
# Equals Set$new(1,2)$equals(Set$new(5,6)) Set$new(1,2)$equals(Interval$new(1,2)) Set$new(1,2) == Interval$new(1,2, class = "integer") # Not equal !Set$new(1,2)$equals(Set$new(1,2)) Set$new(1,2) != Set$new(1,5)
isSubset()Test if one set is a (proper) subset of another
Universal$isSubset(x, proper = FALSE, all = FALSE)
xany. Object or vector of objects to test.
properlogical. If TRUE tests for proper subsets.
alllogical. If FALSE tests each x separately. Otherwise returns TRUE only if all x pass test.
If using the method directly, and not via one of the operators then the additional boolean
argument proper can be used to specify testing of subsets or proper subsets. A Set is a proper
subset of another if it is fully contained by the other Set (i.e. not equal to) whereas a Set is a
(non-proper) subset if it is fully contained by, or equal to, the other Set.
When calling $isSubset on objects inheriting from Interval, the method treats the interval as if
it is a Set, i.e. ordering and class are ignored. Use $isSubinterval to test if one interval
is a subinterval of another.
Infix operators can be used for:
| Subset | < |
| Proper Subset | <= |
| Superset | > |
| Proper Superset | >= |
Every Set is a subset of a Universal. No Set is a super set of a Universal,
and only a Universal is not a proper subset of a Universal.
If all is TRUE then returns TRUE if all x are subsets of the Set, otherwise
FALSE. If all is FALSE then returns a vector of logicals corresponding to each individual
element of x.
Set$new(1,2,3)$isSubset(Set$new(1,2), proper = TRUE) Set$new(1,2) < Set$new(1,2,3) # proper subset c(Set$new(1,2,3), Set$new(1)) < Set$new(1,2,3) # not proper Set$new(1,2,3) <= Set$new(1,2,3) # proper
contains()Tests to see if x is contained in the Set.
Universal$contains(x, all = FALSE, bound = NULL)
xany. Object or vector of objects to test.
alllogical. If FALSE tests each x separately. Otherwise returns TRUE only if all x pass test.
boundignored.
x can be of any type, including a Set itself. x should be a tuple if
checking to see if it lies within a set of dimension greater than one. To test for multiple x
at the same time, then provide these as a list.
If using the method directly, and not via one of the operators then the additional boolean
arguments all and bound. If all = TRUE then returns TRUE if all x are contained in the Set, otherwise
returns a vector of logicals. For Intervals, bound is used to specify if elements lying on the
(possibly open) boundary of the interval are considered contained (bound = TRUE) or not (bound = FALSE).
If all is TRUE then returns TRUE if all elements of x are contained in the Set, otherwise
FALSE. If all is FALSE then returns a vector of logicals corresponding to each individual
element of x.
The infix operator %inset% is available to test if x is an element in the Set,
see examples.
Every element is contained within the Universal set.
s = Set$new(1:5) # Simplest case s$contains(4) 8 %inset% s # Test if multiple elements lie in the set s$contains(4:6, all = FALSE) s$contains(4:6, all = TRUE) # Check if a tuple lies in a Set of higher dimension s2 = s * s s2$contains(Tuple$new(2,1)) c(Tuple$new(2,1), Tuple$new(1,7), 2) %inset% s2
strprint()Creates a printable representation of the object.
Universal$strprint(n = NULL)
nnumeric. Number of elements to display on either side of ellipsis when printing.
A character string representing the object.
clone()The objects of this class are cloneable with this method.
Universal$clone(deep = FALSE)
deepWhether to make a deep clone.
u <- Universal$new() print(u) #> 𝕍 u$contains(c(1, letters, TRUE, Set$new()), all = TRUE) #> [1] TRUE ## ------------------------------------------------ ## Method `Universal$equals` ## ------------------------------------------------ # Equals Set$new(1,2)$equals(Set$new(5,6)) #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> debug: return(all(comp)) #> [1] FALSE Set$new(1,2)$equals(Interval$new(1,2)) #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } else { #> return(FALSE) #> } #> debug: return(FALSE) #> [1] FALSE Set$new(1,2) == Interval$new(1,2, class = "integer") #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } else { #> return(FALSE) #> } #> debug: return(all(suppressWarnings(y$elements %in% self$elements & self$elements %in% #> y$elements))) #> [1] TRUE # Not equal !Set$new(1,2)$equals(Set$new(1,2)) #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> debug: return(all(comp)) #> [1] FALSE Set$new(1,2) != Set$new(1,5) #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> debug: return(all(comp)) #> [1] TRUE ## ------------------------------------------------ ## Method `Universal$isSubset` ## ------------------------------------------------ Set$new(1,2,3)$isSubset(Set$new(1,2), proper = TRUE) #> [1] TRUE Set$new(1,2) < Set$new(1,2,3) # proper subset #> [1] TRUE c(Set$new(1,2,3), Set$new(1)) < Set$new(1,2,3) # not proper #> [1] FALSE TRUE Set$new(1,2,3) <= Set$new(1,2,3) # proper #> [1] TRUE ## ------------------------------------------------ ## Method `Universal$contains` ## ------------------------------------------------ s = Set$new(1:5) # Simplest case s$contains(4) #> [1] TRUE 8 %inset% s #> [1] FALSE # Test if multiple elements lie in the set s$contains(4:6, all = FALSE) #> [1] TRUE TRUE FALSE s$contains(4:6, all = TRUE) #> [1] FALSE # Check if a tuple lies in a Set of higher dimension s2 = s * s s2$contains(Tuple$new(2,1)) #> [1] TRUE c(Tuple$new(2,1), Tuple$new(1,7), 2) %inset% s2 #> [1] TRUE FALSE FALSE