The mathematical set of complex numbers, defined as the the set of reals with possibly imaginary components. i.e. $$\\{a + bi \\ : \\ a,b \in R\\}$$ where \(R\) is the set of reals.
There is no inherent ordering in the set of complex numbers, hence only the contains
method is implemented here.
Other special sets:
ExtendedReals
,
Integers
,
Logicals
,
Naturals
,
NegIntegers
,
NegRationals
,
NegReals
,
PosIntegers
,
PosNaturals
,
PosRationals
,
PosReals
,
Rationals
,
Reals
,
Universal
set6::Set
-> Complex
new()
Create a new Complex
object.
Complex$new()
A new Complex
object.
contains()
Tests to see if x
is contained in the Set.
Complex$contains(x, all = FALSE, bound = NULL)
x
any. Object or vector of objects to test.
all
logical. If FALSE
tests each x
separately. Otherwise returns TRUE
only if all x
pass test.
bound
logical.
x
can be of any type, including a Set itself. x
should be a tuple if
checking to see if it lies within a set of dimension greater than one. To test for multiple x
at the same time, then provide these as a list.
If all = TRUE
then returns TRUE
if all x
are contained in the Set
, otherwise
returns a vector of logicals. For Intervals, bound
is used to specify if elements lying on the
(possibly open) boundary of the interval are considered contained (bound = TRUE
) or not (bound = FALSE
).
If all
is TRUE
then returns TRUE
if all elements of x
are contained in the Set
, otherwise
FALSE.
If all
is FALSE
then returns a vector of logicals corresponding to each individual
element of x
.
The infix operator %inset%
is available to test if x
is an element in the Set
,
see examples.
equals()
Tests if two sets are equal.
Complex$equals(x, all = FALSE)
If all
is TRUE
then returns TRUE
if all x
are equal to the Set, otherwise
FALSE
. If all
is FALSE
then returns a vector of logicals corresponding to each individual
element of x
.
Infix operators can be used for:
Equal | == |
Not equal | != |
# Equals Set$new(1,2)$equals(Set$new(5,6)) Set$new(1,2)$equals(Interval$new(1,2)) Set$new(1,2) == Interval$new(1,2, class = "integer") # Not equal !Set$new(1,2)$equals(Set$new(1,2)) Set$new(1,2) != Set$new(1,5)
isSubset()
Test if one set is a (proper) subset of another
Complex$isSubset(x, proper = FALSE, all = FALSE)
x
any. Object or vector of objects to test.
proper
logical. If TRUE
tests for proper subsets.
all
logical. If FALSE
tests each x
separately. Otherwise returns TRUE
only if all x
pass test.
If using the method directly, and not via one of the operators then the additional boolean
argument proper
can be used to specify testing of subsets or proper subsets. A Set is a proper
subset of another if it is fully contained by the other Set (i.e. not equal to) whereas a Set is a
(non-proper) subset if it is fully contained by, or equal to, the other Set.
When calling $isSubset
on objects inheriting from Interval, the method treats the interval as if
it is a Set, i.e. ordering and class are ignored. Use $isSubinterval
to test if one interval
is a subinterval of another.
Infix operators can be used for:
Subset | < |
Proper Subset | <= |
Superset | > |
Proper Superset | >= |
Every Set
is a subset of a Universal
. No Set
is a super set of a Universal
,
and only a Universal
is not a proper subset of a Universal
.
If all
is TRUE
then returns TRUE
if all x
are subsets of the Set, otherwise
FALSE
. If all
is FALSE
then returns a vector of logicals corresponding to each individual
element of x
.
Set$new(1,2,3)$isSubset(Set$new(1,2), proper = TRUE) Set$new(1,2) < Set$new(1,2,3) # proper subset c(Set$new(1,2,3), Set$new(1)) < Set$new(1,2,3) # not proper Set$new(1,2,3) <= Set$new(1,2,3) # proper
strprint()
Creates a printable representation of the object.
Complex$strprint(n = 2)
n
numeric. Number of elements to display on either side of ellipsis when printing.
A character string representing the object.
clone()
The objects of this class are cloneable with this method.
Complex$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `Complex$equals` ## ------------------------------------------------ # Equals Set$new(1,2)$equals(Set$new(5,6)) #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> debug: return(all(comp)) #> [1] FALSE Set$new(1,2)$equals(Interval$new(1,2)) #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } else { #> return(FALSE) #> } #> debug: return(FALSE) #> [1] FALSE Set$new(1,2) == Interval$new(1,2, class = "integer") #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } else { #> return(FALSE) #> } #> debug: return(all(suppressWarnings(y$elements %in% self$elements & self$elements %in% #> y$elements))) #> [1] TRUE # Not equal !Set$new(1,2)$equals(Set$new(1,2)) #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> debug: return(all(comp)) #> [1] FALSE Set$new(1,2) != Set$new(1,5) #> Called from: FUN(X[[i]], ...) #> debug: if (!testSet(y)) { #> return(FALSE) #> } #> debug: if (testFuzzy(y)) { #> if (!all(y$membership() == 1)) { #> return(FALSE) #> } #> } #> debug: if (testConditionalSet(y)) { #> return(FALSE) #> } else if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (testInterval(y)) { #> if (testCountablyFinite(y)) { #> return(all(suppressWarnings(y$elements %in% self$elements & #> self$elements %in% y$elements))) #> } #> else { #> return(FALSE) #> } #> } else if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: if (sum(testEmpty(self), testEmpty(y)) == 1) { #> return(FALSE) #> } else { #> comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> return(all(comp)) #> } #> debug: comp <- suppressWarnings(y$.__enclos_env__$private$.str_elements %in% #> private$.str_elements & private$.str_elements %in% y$.__enclos_env__$private$.str_elements) #> debug: return(all(comp)) #> [1] TRUE ## ------------------------------------------------ ## Method `Complex$isSubset` ## ------------------------------------------------ Set$new(1,2,3)$isSubset(Set$new(1,2), proper = TRUE) #> [1] TRUE Set$new(1,2) < Set$new(1,2,3) # proper subset #> [1] TRUE c(Set$new(1,2,3), Set$new(1)) < Set$new(1,2,3) # not proper #> [1] FALSE TRUE Set$new(1,2,3) <= Set$new(1,2,3) # proper #> [1] TRUE