ComplementSet class for symbolic complement of mathematical sets.
The purpose of this class is to provide a symbolic representation for the complement of sets that cannot be represented in a simpler class. Whilst this is not an abstract class, it is not recommended to construct this class directly but via the set operation methods.
Set operations: setunion, setproduct, setpower, setcomplement, setsymdiff, powerset, setintersect
Other wrappers:
ExponentSet,
PowersetSet,
ProductSet,
UnionSet
set6::Set -> set6::SetWrapper -> ComplementSet
elementsReturns the elements in the object.
lengthReturns the number of elements in the object.
addedSetFor the ComplementSet wrapper, X-Y, returns the set X.
subtractedSetFor the ComplementSet wrapper, X-Y, returns the set Y.
new()Create a new ComplementSet object. It is not recommended to construct this class directly.
ComplementSet$new(addset, subtractset, lower = NULL, upper = NULL, type = NULL)
A new ComplementSet object.
strprint()Creates a printable representation of the object.
ComplementSet$strprint(n = 2)
nnumeric. Number of elements to display on either side of ellipsis when printing.
A character string representing the object.
contains()Tests if elements x are contained in self.
ComplementSet$contains(x, all = FALSE, bound = FALSE)
If all == TRUE then returns TRUE if all x are contained in self, otherwise FALSE.
If all == FALSE returns a vector of logicals corresponding to the length of x, representing
if each is contained in self. If bound == TRUE then an element is contained in self if it
is on or within the (possibly-open) bounds of self, otherwise TRUE only if the element is within
self or the bounds are closed.
clone()The objects of this class are cloneable with this method.
ComplementSet$clone(deep = FALSE)
deepWhether to make a deep clone.