A convenience wrapper for the n-ary cartesian product of a Set by itself, possibly multiple times.

setpower(x, power, simplify = FALSE, nest = FALSE)

# S3 method for Set
^(x, power)

Arguments

x

Set

power

power to raise set to, if "n" then a variable dimension set is created, see examples.`

simplify

logical, if TRUE returns the result in its simplest (unwrapped) form, usually a Set, otherwise an ExponentSet.

nest

logical, if FALSE (default) returns the n-ary cartesian product, otherwise returns the cartesian product applied n times. Sets. See details and examples.

Value

An R6 object of class Set or ExponentSet inheriting from ProductSet.

Details

See the details of setproduct for a longer discussion on the use of the nest argument, in particular with regards to n-ary cartesian products vs. 'standard' cartesian products.

See also

Examples

# Power of a Set setpower(Set$new(1, 2), 3, simplify = FALSE)
#> {1, 2}^3
setpower(Set$new(1, 2), 3, simplify = TRUE)
#> {(1, 1, 1), (2, 1, 1),...,(1, 2, 2), (2, 2, 2)}
Set$new(1, 2)^3
#> {1, 2}^3
# Power of an interval Interval$new(2, 5)^5
#> [2,5]^5
Reals$new()^3
#> ℝ^3
# Use tuples for contains (PosNaturals$new()^3)$contains(Tuple$new(1, 2, 3))
#> [1] TRUE
# Power of ConditionalSet is meaningless ConditionalSet$new(function(x) TRUE)^2
#> {TRUE : x ∈ V}^2
# Power of FuzzySet FuzzySet$new(1, 0.1, 2, 0.5)^2
#> {1(0.1), 2(0.5)}^2
# Variable length x <- Interval$new(0, 1)^"n" x$contains(Tuple$new(0))
#> [1] TRUE
x$contains(Tuple$new(0, 1))
#> [1] TRUE
x$contains(Tuple$new(0, 1, 0, 0, 1, 1, 0))
#> [1] TRUE
x$contains(list(Tuple$new(0, 2), Tuple$new(1, 1)))
#> [1] FALSE TRUE