A wrapper for creating the product distribution of multiple independent probability distributions.
# S3 method for class 'Distribution'
x * y
A product distribution is defined by
$$F_P(X1 = x1,...,XN = xN) = F_{X1}(x1) * ... * F_{XN}(xn)$$ #nolint where \(F_P\) is the cdf of the product distribution and \(X1,...,XN\) are independent distributions.
distr6::Distribution
-> distr6::DistributionWrapper
-> distr6::VectorDistribution
-> ProductDistribution
Inherited methods
distr6::Distribution$confidence()
distr6::Distribution$correlation()
distr6::Distribution$iqr()
distr6::Distribution$liesInSupport()
distr6::Distribution$liesInType()
distr6::Distribution$parameters()
distr6::Distribution$prec()
distr6::Distribution$print()
distr6::Distribution$setParameterValue()
distr6::Distribution$stdev()
distr6::Distribution$summary()
distr6::Distribution$workingSupport()
distr6::VectorDistribution$cf()
distr6::VectorDistribution$entropy()
distr6::VectorDistribution$getParameterValue()
distr6::VectorDistribution$kurtosis()
distr6::VectorDistribution$mean()
distr6::VectorDistribution$median()
distr6::VectorDistribution$mgf()
distr6::VectorDistribution$mode()
distr6::VectorDistribution$pgf()
distr6::VectorDistribution$rand()
distr6::VectorDistribution$skewness()
distr6::VectorDistribution$variance()
distr6::VectorDistribution$wrappedModels()
new()
Creates a new instance of this R6 class.
ProductDistribution$new(
distlist = NULL,
distribution = NULL,
params = NULL,
shared_params = NULL,
name = NULL,
short_name = NULL,
decorators = NULL,
vecdist = NULL,
ids = NULL
)
distlist
(list())
List of Distributions.
distribution
(character(1))
Should be supplied with params
and optionally shared_params
as an alternative to distlist
.
Much faster implementation when only one class of distribution is being wrapped. distribution
is the full name of one of the distributions in listDistributions()
, or "Distribution"
if
constructing custom distributions. See examples in VectorDistribution.
params
(list()|data.frame())
Parameters in the individual distributions for use with distribution
. Can be supplied as a list,
where each element is the list of parameters to set in the distribution, or as an object
coercable to data.frame
, where each column is a parameter and each row is a distribution.
See examples in VectorDistribution.
shared_params
(list())
If any parameters are shared when using the distribution
constructor, this provides a much faster
implementation to list and query them together. See examples in VectorDistribution.
name
(character(1))
Optional name of wrapped distribution.
short_name
(character(1))
Optional short name/ID of wrapped distribution.
decorators
(character())
Decorators to add to the distribution during construction.
vecdist
VectorDistribution
Alternative constructor to directly create this object from an object inheriting from
VectorDistribution.
ids
(character())
Optional ids for wrapped distributions in vector, should be unique and of same length as
the number of distributions.
\dontrun{
ProductDistribution$new(list(Binomial$new(
prob = 0.5,
size = 10
), Normal$new(mean = 15)))
ProductDistribution$new(
distribution = "Binomial",
params = list(
list(prob = 0.1, size = 2),
list(prob = 0.6, size = 4),
list(prob = 0.2, size = 6)
)
)
# Equivalently
ProductDistribution$new(
distribution = "Binomial",
params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))
)
}
strprint()
Printable string representation of the ProductDistribution
. Primarily used internally.
pdf()
Probability density function of the product distribution. Computed by $$f_P(X1 = x1,...,XN = xN) = \prod_{i} f_{Xi}(xi)$$ where \(f_{Xi}\) are the pdfs of the wrapped distributions.
...
(numeric())
Points to evaluate the function at Arguments do not need
to be named. The length of each argument corresponds to the number of points to evaluate,
the number of arguments corresponds to the number of variables in the distribution.
See examples.
log
(logical(1))
If TRUE
returns the logarithm of the probabilities. Default is FALSE
.
simplify
logical(1)
If TRUE
(default) simplifies the return if possible to a numeric
, otherwise returns a
data.table::data.table.
data
array
Alternative method to specify points to evaluate. If univariate then rows correspond with number
of points to evaluate and columns correspond with number of variables to evaluate. In the special
case of VectorDistributions of multivariate distributions, then the third dimension corresponds
to the distribution in the vector to evaluate.
p <- ProductDistribution$new(list(
Binomial$new(prob = 0.5, size = 10),
Binomial$new()))
p$pdf(1:5)
p$pdf(1, 2)
p$pdf(1:2)
cdf()
Cumulative distribution function of the product distribution. Computed by $$F_P(X1 = x1,...,XN = xN) = \prod_{i} F_{Xi}(xi)$$ where \(F_{Xi}\) are the cdfs of the wrapped distributions.
ProductDistribution$cdf(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL
)
...
(numeric())
Points to evaluate the function at Arguments do not need
to be named. The length of each argument corresponds to the number of points to evaluate,
the number of arguments corresponds to the number of variables in the distribution.
See examples.
lower.tail
(logical(1))
If TRUE
(default), probabilities are X <= x
, otherwise, P(X > x)
.
log.p
(logical(1))
If TRUE
returns the logarithm of the probabilities. Default is FALSE
.
simplify
logical(1)
If TRUE
(default) simplifies the return if possible to a numeric
, otherwise returns a
data.table::data.table.
data
array
Alternative method to specify points to evaluate. If univariate then rows correspond with number
of points to evaluate and columns correspond with number of variables to evaluate. In the special
case of VectorDistributions of multivariate distributions, then the third dimension corresponds
to the distribution in the vector to evaluate.
p <- ProductDistribution$new(list(
Binomial$new(prob = 0.5, size = 10),
Binomial$new()))
p$cdf(1:5)
p$cdf(1, 2)
p$cdf(1:2)
quantile()
The quantile function is not implemented for product distributions.
ProductDistribution$quantile(
...,
lower.tail = TRUE,
log.p = FALSE,
simplify = TRUE,
data = NULL
)
...
(numeric())
Points to evaluate the function at Arguments do not need
to be named. The length of each argument corresponds to the number of points to evaluate,
the number of arguments corresponds to the number of variables in the distribution.
See examples.
lower.tail
(logical(1))
If TRUE
(default), probabilities are X <= x
, otherwise, P(X > x)
.
log.p
(logical(1))
If TRUE
returns the logarithm of the probabilities. Default is FALSE
.
simplify
logical(1)
If TRUE
(default) simplifies the return if possible to a numeric
, otherwise returns a
data.table::data.table.
data
array
Alternative method to specify points to evaluate. If univariate then rows correspond with number
of points to evaluate and columns correspond with number of variables to evaluate. In the special
case of VectorDistributions of multivariate distributions, then the third dimension corresponds
to the distribution in the vector to evaluate.
## ------------------------------------------------
## Method `ProductDistribution$new`
## ------------------------------------------------
if (FALSE) { # \dontrun{
ProductDistribution$new(list(Binomial$new(
prob = 0.5,
size = 10
), Normal$new(mean = 15)))
ProductDistribution$new(
distribution = "Binomial",
params = list(
list(prob = 0.1, size = 2),
list(prob = 0.6, size = 4),
list(prob = 0.2, size = 6)
)
)
# Equivalently
ProductDistribution$new(
distribution = "Binomial",
params = data.table::data.table(prob = c(0.1, 0.6, 0.2), size = c(2, 4, 6))
)
} # }
## ------------------------------------------------
## Method `ProductDistribution$pdf`
## ------------------------------------------------
p <- ProductDistribution$new(list(
Binomial$new(prob = 0.5, size = 10),
Binomial$new()))
p$pdf(1:5)
#> [1] 9.536743e-05 1.931190e-03 1.373291e-02 4.205704e-02 6.056213e-02
p$pdf(1, 2)
#> [1] 0.0004291534
p$pdf(1:2)
#> [1] 9.536743e-05 1.931190e-03
## ------------------------------------------------
## Method `ProductDistribution$cdf`
## ------------------------------------------------
p <- ProductDistribution$new(list(
Binomial$new(prob = 0.5, size = 10),
Binomial$new()))
p$cdf(1:5)
#> [1] 0.0001153946 0.0029907227 0.0295410156 0.1420936584 0.3881874084
p$cdf(1, 2)
#> [1] 0.0005874634
p$cdf(1:2)
#> [1] 0.0001153946 0.0029907227
Normal$new() * Binomial$new()
#> Norm X Binom