A general Multiset object for mathematical Multisets, inheriting from Set.
Multisets are generalisations of sets that allow an element to be repeated. They can be thought of as Tuples without ordering.
Other sets:
ConditionalSet,
FuzzyMultiset,
FuzzySet,
FuzzyTuple,
Interval,
Set,
Tuple
set6::Set -> Multiset
equals()Tests if two sets are equal.
Multiset$equals(x, all = FALSE)
An object is equal to a Multiset if it contains all the same elements, and in the same order. Infix operators can be used for:
| Equal | == |
| Not equal | != |
If all is TRUE then returns TRUE if all x are equal to the Set, otherwise
FALSE. If all is FALSE then returns a vector of logicals corresponding to each individual
element of x.
Multiset$new(1,2) == Multiset$new(1,2) Multiset$new(1,2) != Multiset$new(1,2) Multiset$new(1,1) != Set$new(1,1)
isSubset()Test if one set is a (proper) subset of another
Multiset$isSubset(x, proper = FALSE, all = FALSE)
xany. Object or vector of objects to test.
properlogical. If TRUE tests for proper subsets.
alllogical. If FALSE tests each x separately. Otherwise returns TRUE only if all x pass test.
If using the method directly, and not via one of the operators then the additional boolean
argument proper can be used to specify testing of subsets or proper subsets. A Set is a proper
subset of another if it is fully contained by the other Set (i.e. not equal to) whereas a Set is a
(non-proper) subset if it is fully contained by, or equal to, the other Set.
When calling $isSubset on objects inheriting from Interval, the method treats the interval as if
it is a Set, i.e. ordering and class are ignored. Use $isSubinterval to test if one interval
is a subinterval of another.
Infix operators can be used for:
| Subset | < |
| Proper Subset | <= |
| Superset | > |
| Proper Superset | >= |
An object is a (proper) subset of a Multiset if it contains all (some) of the same elements, and in the same order.
If all is TRUE then returns TRUE if all x are subsets of the Set, otherwise
FALSE. If all is FALSE then returns a vector of logicals corresponding to each individual
element of x.
Multiset$new(1,2,3) < Multiset$new(1,2,3,4) Multiset$new(1,3,2) < Multiset$new(1,2,3,4) Multiset$new(1,3,2,4) <= Multiset$new(1,2,3,4)
clone()The objects of this class are cloneable with this method.
Multiset$clone(deep = FALSE)
deepWhether to make a deep clone.
# Multiset of integers Multiset$new(1:5) #> {1, 2,...,4, 5} # Multiset of multiple types Multiset$new("a", 5, Set$new(1), Multiset$new(2)) #> {{1}, {2}, 5, a} # Each Multiset has properties and traits t <- Multiset$new(1, 2, 3) t$traits #> $crisp #> [1] TRUE #> t$properties #> $empty #> [1] FALSE #> #> $singleton #> [1] FALSE #> #> $cardinality #> [1] 3 #> #> $countability #> [1] "countably finite" #> #> $closure #> [1] "closed" #> # Elements can be duplicated Multiset$new(2, 2) != Multiset$new(2) #> [1] TRUE # Ordering does not matter Multiset$new(1, 2) == Multiset$new(2, 1) #> [1] TRUE ## ------------------------------------------------ ## Method `Multiset$equals` ## ------------------------------------------------ Multiset$new(1,2) == Multiset$new(1,2) #> [1] TRUE Multiset$new(1,2) != Multiset$new(1,2) #> [1] FALSE Multiset$new(1,1) != Set$new(1,1) #> [1] TRUE ## ------------------------------------------------ ## Method `Multiset$isSubset` ## ------------------------------------------------ Multiset$new(1,2,3) < Multiset$new(1,2,3,4) #> [1] TRUE Multiset$new(1,3,2) < Multiset$new(1,2,3,4) #> [1] TRUE Multiset$new(1,3,2,4) <= Multiset$new(1,2,3,4) #> [1] TRUE